4.8 Article

Magnetic and Optical Properties of Au-Co Solid Solution and Phase-Separated Thin Films and Nanoparticles

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 13, 页码 15047-15058

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c02028

关键词

magnetic; optical; plasmonic; nanoparticles; solid solution; phase separation

资金

  1. National Science Foundation [NSF DMR 1709275]
  2. U.S. Department of Energy, Office of Science, Office of Basic Research CAREER program [DE-SC0021344]
  3. U.S. Department of Energy (DOE) [DE-SC0021344] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The magnetic and optical properties of AuxCo1-x thin films and nanoparticles can be tuned by controlling their chemical composition and morphology. Annealing leads to phase separation and enhances the magnetic properties. The optical properties are greatly influenced by the chemical morphology, where phase separation enhances the quality factor and optical absorption.
The chemical composition and morphology of AuxCo1-x thin films and nanoparticles are controlled via a combination of cosputtering, pulsed laser-induced dewetting (PLiD), and annealing, leading to tunable magnetic and optical properties. Regardless of chemical composition, the as-deposited thin films and as-PLiD nanoparticles are found to possess a face-centered cubic (FCC) AuxCo1-x solid- solution crystal structure. Annealing results in large phase-separated grains of Au and Co in both the thin films and nanostructures for all chemical compositions. The magnetic and optical properties are characterized via vibrating sample magnetometry (VSM), ellipsometry, optical transmission spectroscopy, and electron energy loss spectroscopy (EELS). Despite the exceptionally high magnetic anisotropy inherent to Co, the presence of sufficient Au (72 atom %) in the AuxCo1-x solid solution results in superparamagnetic thin films. Among the as-PLiD nanoparticle samples, an increased Co composition leads to a departure from traditional ferromagnetism in favor of wasp-waisted hysteresis caused by magnetic vortices. Phase separation resulting from annealing leads to ferromagnetism for all compositions in both the thin films and nanoparticles. The optical properties of AuxCo1-x nanostructures are also largely influenced by the chemical morphology, where the AuxCo1-x intermixed solid solution has significantly damped plasmonic performance relative to pure Au and comparable to pure Co. Phase separation greatly enhances the quality factor, optical absorption, and electron energy loss spectroscopy (EELS) signatures. The enhancement of the localized surface plasmon resonances (LSPRs) scales with the reduction in Co composition, despite EELS evidence that excitation of the Co portions of a nanoparticle can provide a similar, and in some instances enhanced, LSPR resonance compared to Au. This behavior, however, is seemingly limited to the LSPR dipole mode, while higher-order modes are greatly damped by a Co aloof position. This observed magneto-plasmonic functionality and tunability could be applicable in biomedicine, namely, cancer therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据