4.8 Article

Enhanced Output Performance of Piezoelectric Nanogenerators by Tb-Modified (BaCa)(ZrTi)O3 and 3D Core/shell Structure Design with PVDF Composite Spinning for Microenergy Harvesting

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 10, 页码 12243-12256

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c23946

关键词

Piezoelectric nanogenerators; electrospinning; 3D core/shell structure; BCZT particles; micro-energy harvesting

资金

  1. China Postdoctoral Science Foundation [2021M701052]
  2. National Natural Science Foundation of China [51872074]
  3. Program for Innovative Research Team in Science and Technology in University of Henan Province [19IRTSTHN019]
  4. Natural Science Foundation of Henan Province [212300410004]

向作者/读者索取更多资源

This article presents the design and performance optimization of a flexible piezoelectric nanogenerator (PENG). The improved PENG shows significantly enhanced output power due to the innovative structure design and material modification. PENG-based fibers can harvest various mechanical energies to power electronic devices.
Flexible piezoelectric nanogenerators (PENG) have attracted great attention due to their stable electrical output and promising applications in the Internet of Things. To develop a high-performance PENG, a significant relationship among material, structure, and performance precipitates us to design its rational construction. Herein, Tb-modified (BaCa)(ZrTi)O-3 (BCZT) particles have been fabricated into a 3D structure (3D-Tb-BCZT) by the freeze-drying method, and the innovative 3D core/shell structure of 3D-Tb-BCZT-coated 3D-Tb-BCZT/PVDF composite fibers was carried out through the coaxial electrospinning method. The innovative structure can significantly enhance correlation between adjacent piezoelectric particles and improve stress-transfer efficiency, which can be proven by experimental results and COMSOL simulation. As a result, the improved PENG shows a significantly enhanced output of 48.5 V and 3.35 mu A as compared to the PENG with the conventional electrospinning process (15.6 V and 1.32 mu A). Due to the advantages of light weight, soft flexibility, and high deformation sensitivity of composite fibers, PENG-based fibers can harvest various mechanical energies in daily life such as biological motion, noise vibration, and wind energies. More importantly, the PENG is sufficient enough to power an electronic device for sustained operation by capturing wind energies through power management circuit design, which further promotes the practical application process of a self-powered system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据