4.8 Article

Ion-Induced Synthesis of Crystalline Carbon Nitride Ultrathin Nanosheets from Mesoporous Melon for Efficient Photocatalytic Hydrogen Evolution with Synchronous Highly Selective Oxidation of Benzyl Alcohol

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 11, 页码 13419-13430

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c01522

关键词

crystalline carbon nitride; poly(heptazine imide); ultrathin nanosheet; photocatalytic hydrogen evolution; benzyl alcohol

资金

  1. National Natural Science Foundation of China [21872082]
  2. Young Scholars Program of Shandong University in China [2018WLJH39]

向作者/读者索取更多资源

In this study, Na+-doped ultrathin crystalline carbon nitride nanosheets (CCNuns) were successfully synthesized and demonstrated high performance in photocatalytic hydrogen evolution and organic oxidation. Additionally, the selectivity of CCNuns for benzaldehyde formation was found to increase gradually with increasing light wavelengths, which is of great significance.
Crystalline carbon nitride (CCN) with a poly(heptazine imide) structure is efficient in photocatalytic hydrogen evolution (PHE), but synthesis of CCN ultrathin nanosheets (CCNuns) and their use in PHE with selective organic oxidation are still rare. Herein, CCNuns with Na+ doping are prepared using NaCl as the ion-induction and templating agent and mesoporous melon as the feedstock, exhibiting efficient synchronous PHE and benzyl alcohol oxidation to benzaldehyde, with an apparent quantum yield of 10.5% at 420 nm and a visible light PHE rate that is 94.3 times that of bulk polymeric carbon nitride (PCN). The selectivity of benzaldehyde formation (90.5%) is also much higher than that of PCN (40.7%). Interestingly, this selectivity increases gradually with increasing light wavelengths. The high photoactivity of CCNuns originates from their ultrathinness and Na+ doping, which considerably enhance the photogenerated charge separation. This work opens up an avenue for the synthesis of CCNuns and extends their application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据