4.8 Article

Dry Synthesis of Binder-Free Ruthenium Nitride-Coated Carbon Nanotubes as a Flexible Supercapacitor Electrode

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 14, 期 13, 页码 15112-15121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c22276

关键词

ruthenium nitride; carbon nanotubes; plasma-enhanced laser deposition; supercapacitor electrode; flexible electrode

资金

  1. Faculty of Engineering through the Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. McGill Engineering Doctoral Award (MEDA)
  3. Fonds de recherche du Quebec-Nature et Technologies (FRQNT)
  4. Gerald Hatch Faculty Fellowship

向作者/读者索取更多资源

This study successfully deposited ruthenium nitride on a stainless-steel mesh substrate using a novel dry fabrication method. The method eliminates toxic byproducts and the need for binders, making it ideal for flexible supercapacitor electrodes. Experimental results showed a significant improvement in capacitance of the synthesized ruthenium nitride-multiwalled carbon nanotube electrode, with a large potential window.
Ruthenium nitride was successfully deposited on a multiwalled carbon nanotube (MWCNT) forest grown on a stainless-steel mesh substrate by radiofrequency plasma-assisted pulsed laser deposition. This novel dry fabrication method for flexible supercapacitor electrodes eliminates toxic byproducts and the need for any binder component. Experimental results show a successful thin film coating of the individual MWCNTs with RuNx under various synthesis conditions. The electrochemical characterization demonstrates a significant improvement in capacitance of the synthesized RuNx-MWCNT electrode compared to the bare MWCNT forest, with a large potential window of 1.2 V. Capacitance values as high as 818.2 F g(-1) (37.9 mF cm(-2)) have been achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据