4.3 Article

GPU Domain Specialization via Composable On-Package Architecture

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3484505

关键词

GPU computing; multi-chip module

向作者/读者索取更多资源

This paper introduces a new COPA-GPU architecture to address the performance challenges of current GPUs in handling HPC and DL workloads. By utilizing modular design and memory system specialization, COPA-GPU can enable DL-specific products and provide higher performance.
As GPUs scale their low-precision matrix math throughput to boost deep learning (DL) performance, they upset the balance between math throughput and memory system capabilities. We demonstrate that a converged GPU design trying to address diverging architectural requirements between FP32 (or larger)-based HPC and FP16 (or smaller)-based DL workloads results in sub-optimal configurations for either of the application domains. We argue that a Composable On-PAckage GPU (COPA-GPU) architecture to provide domain-specialized GPU products is the most practical solution to these diverging requirements. A COPA-GPU leverages multi-chip-module disaggregation to support maximal design reuse, along with memory system specialization per application domain. We show how a COPA-GPU enables DL-specialized products by modular augmentation of the baseline GPU architecture with up to 4x higher off-die bandwidth, 32x larger on-package cache, and 2.3x higher DRAM bandwidth and capacity, while conveniently supporting scaled-down HPC-oriented designs. This work explores the microarchitectural design necessary to enable composable GPUs and evaluates the benefits composability can provide to HPC, DL training, and DL inference. We show that when compared to a converged GPU design, a DL-optimized COPA-GPU featuring a combination of 16x larger cache capacity and 1.6x higher DRAM bandwidth scales per-GPU training and inference performance by 31% and 35%, respectively, and reduces the number of GPU instances by 50% in scale-out training scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据