4.8 Review

Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 55, 期 9, 页码 1226-1236

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.2c00057

关键词

-

资金

  1. U.S. DOE [DE-SC0012704]
  2. U.S. DOE, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office [DE-SC0012704]

向作者/读者索取更多资源

This article introduces the application of Pt-based core-shell catalysts in proton-exchange membrane fuel cells. By low Pt loading and high corrosion resistance, Pt-based core-shell catalysts can alleviate the drawbacks of existing catalysts and enhance the activity and stability of the oxygen reduction reaction. The article provides a detailed overview of the synthesis strategies, catalytic mechanisms, and optimization of the catalysts' performance by considering factors such as shape, composition, and surface structure. The potential of core-shell catalysts in real fuel cells is evaluated.
Proton-exchange membrane fuel cells (PEMFCs) are highly efficient energy storage and conversion devices. Thus, the platinum group metal (PGM)-based catalysts which are the dominant choice for the PEMFCs have received extensive interest during the past couple of decades. However, the drawbacks in the existing PGM-based catalysts (i.e., high cost, slow kinetics, poor stability, etc.) still limit their applications in fuel cells. The Pt-based core-shell catalysts potentially alleviate these issues through the low Pt loading with the associated low cost and the high corrosion resistance and further improve the oxygen reduction reaction's (ORR's) activity and stability. This Account focuses on the synthetic strategies, catalytic mechanisms, factors influencing enhanced ORR performance, and applications in PEMFCs for the Pt-based core- shell catalysts. We first highlight the synthetic strategies for Pt-based core-shell catalysts induding the galvanic displacement of an underpotentially deposited non-noble metal monolayer, thermal annealing, and dealloying methods, which can be scaled-up to meet the requirements of fuel cell operations. Subsequently, catalytic mechanisms such as the self-healing mechanism in the Pt monolayer on Pd core catalysts, the pinning effect of nitrogen (N) dopants in N-doped PtNi core-shell catalysts, and the ligand effect of the ordered intennetallic structure in L1(0)-Pt/CoPt core-shell catalysts and their synergistic effects in N-doped L1(0)-PtNi catalysts are described in detail. The core-shell structure in the Pt-based catalysts have two main effects for enhanced ORR performance: (i) the interaction between Pt shells and core substrates can tune the electronic state of the surface Pt, thus boosting the ORR activity and stability, and (ii) the outer Pt shell with modest thickness can enhance the oxidation and dissolution resistance of the core, resulting in improved durability. We then review the recent attempts to optimize the ORR performance of the Pt-based core-shell catalysts by considering the shape, composition, surface orientation, and shell thickness. The factors influencing the ORR performance can be grouped into two categories: the effect of the core and the effect of the shell. In the former, PtM core-shell catalysts which use different non-PGM element cores (M) are summarized, and in the latter, Pt-based core-shell catalysts with different shell structures and compositions are described. The modifications of the core and/or shell structure can not only optimize the intermediate-binding energetics on the Pt surface through tuning the strain of the surface Pt, which increases the intrinsic activity and stability, but also offer a significantly decreased catalyst cost. Finally, we discuss the membrane electrode assembly performance of Pt-based core-shell catalysts in fuel cell cathodes and evaluate their potential in real PEMFCs for light-duty and heavy-duty vehicle applications. Even though some challenges to the activity and lifetime in the fuel cells remain, the Pt-based core-shell catalysts are expected to be promising for many practical PEMFC applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据