4.7 Article

Robotic adversarial coverage of known environments

期刊

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
卷 35, 期 12, 页码 1419-1444

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364915625785

关键词

Mobile robot coverage; adversarial coverage; path planning; robotics in hazardous fields; demining

类别

资金

  1. ISF (Israel Science Foundation) [1337/15, 1511/12]

向作者/读者索取更多资源

Coverage is a fundamental problem in robotics, where one or more robots are required to visit each point in a target area at least once. Most previous work has concentrated on finding a coverage path that would minimize the coverage time. In this paper, we consider a new and more general version of the problem: adversarial coverage. Here, the robot operates in an environment that contains threats that might stop the robot. The objective is to cover the target area as quickly as possible, while minimizing the probability that the robot will be stopped before completing the coverage. This version of the problem has many real-world applications, from performing coverage missions in hazardous fields such as nuclear power plants, to surveillance of enemy forces in the battlefield and field demining. In this paper, we discuss the offline version of adversarial coverage, in which a map of the threats is given to the robot in advance. First, we formally define the adversarial coverage problem and present different optimization criteria used to evaluate coverage algorithms in adversarial environments. We show that finding an optimal solution to the adversarial coverage problem is -hard. We therefore suggest two heuristic algorithms: STAC, a spanning-tree-based coverage algorithm, and GAC, which follows a greedy approach. We establish theoretical bounds on the total risk involved in the coverage paths created by these algorithms and on their lengths. Lastly, we compare the effectiveness of these two algorithms in various environments and settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据