3.9 Review

Paradoxes of Hymenoptera flight muscles, extreme machines

期刊

BIOPHYSICAL REVIEWS
卷 14, 期 1, 页码 403-412

出版社

SPRINGERNATURE
DOI: 10.1007/s12551-022-00937-7

关键词

Bees; Ants; Extreme contraction rate; Mitochondria; Creatine kinase; Adenylate diffusion

资金

  1. CAUL

向作者/读者索取更多资源

During the Carboniferous period, insects developed flight capabilities, with the evolution of specialized flight muscles called FMs. These FMs have unique adaptations for high frequency flight, but also present paradoxes and unanswered questions regarding their function and optimization.
In the Carboniferous, insects evolved flight. Intense selection drove for high performance and approximately 100 million years later, Hymenoptera (bees, wasps and ants) emerged. Some species had proportionately small wings, with apparently impossible aerodynamic challenges including a need for high frequency flight muscles (FMs), powered exclusively off aerobic pathways and resulting in extreme aerobic capacities. Modern insect FMs are the most refined and form large dense blocks that occupy 90% of the thorax. These can beat wings at 200 to 230 Hz, more than double that achieved by standard neuromuscular systems. To do so, rapid repolarisation was circumvented through evolution of asynchronous stimulation, stretch activation, elastic recoil and a paradoxically slow Ca2+ reuptake. While the latter conserves ATP, considerable ATP is demanded at the myofibrils. FMs have diminished sarcoplasmic volumes, and ATP is produced solely by mitochondria, which pack myocytes to maximal limits and have very dense cristae. Gaseous oxygen is supplied directly to mitochondria. While FMs appear to be optimised for function, several unusual paradoxes remain. FMs lack any significant equivalent to the creatine kinase shuttle, and myofibrils are twice as wide as those of within cardiomyocytes. The mitochondrial electron transport systems also release large amounts of reactive oxygen species (ROS) and respiratory complexes do not appear to be present at any exceptional level. Given that the loss of the creatine kinase shuttle and elevated ROS impairs heart function, we question how do FM shuttle adenylates at high rates and tolerate oxidative stress conditions that occur in diseased hearts?

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据