4.7 Article

Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: A unified constitutive model and flow rule

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 87, 期 -, 页码 48-68

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2016.09.002

关键词

Unified flow rule; Crystal plasticity; Polycrystalline material; Constitutive behaviour; Finite elements

资金

  1. Army Research Office [W911NF-12-1-0376]
  2. Office of Naval research [N00014-15-1-2040]

向作者/读者索取更多资源

The deformation and failure response of many polycrystalline metallic materials is strongly dependent on the strain-rate. For an applied strain-rate, different points in the material microstructure can undergo strain-rates that differ by orders of magnitude depending on location and deformation history. Dislocation motion in metals is governed by the thermally-activated and drag-dominated processes under low and high rates of deformation, respectively. Commonly used flow rules, e.g the phenomenological power law or the linear viscous drag models are generally applicable to a limited range of strain-rates, without transcending these rates. To enable this transition in a seamless manner, this two part paper develops a unified constitutive model and an image-based crystal plasticity finite element model for polycrystalline hcp metals. The first part develops a dislocation density-based crystal plasticity constitutive relation with a unified flow rule by combining the thermally-activated and drag-dominated stages of dislocation slip, suitable for modeling deformation at a wide range of strain-rates. The model is explicitly temperature dependent, making it appropriate for simulating high rate deformations, where temperature increases locally with plastic deformation due to the adiabatic heating. The unified model is used to study rate-sensitivity of flow stress in single crystal and polycrystalline titanium alloy, Ti-7Al. An elastic overshoot, followed by a stress relaxation is observed at high strain-rates in single crystals. For the polycrystalline simulations, the model effectively captures the increase in rate sensitivity at high strain-rates. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据