3.8 Article

Wave propagation and directionality in two-dimensional periodic lattices considering shear deformations

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/23977914211069474

关键词

Wave propagation; lattice materials; finite element method; shear deformation; Bloch's theorem

向作者/读者索取更多资源

This paper investigates the effect of shear deformation on wave propagation in periodic lattices with different topologies. It is found that shear deformation has a softening effect on wave propagation, shifting dispersion branches to lower frequencies and revealing previously unpredicted bandgaps.
The effects of shear deformation on analysis of the wave propagation in periodic lattices are often assumed negligible. However, this assumption is not always true, especially for the lattices made of beams with smaller aspect ratios. Therefore, in the present paper, the effect of shear deformation on wave propagation in periodic lattices with different topologies is studied and their wave attenuation and directionality performances are compared. Current experimental limitations make the researchers focus more on the wave propagation in the direction perpendicular to the plane of periodicity in micro/nanoscale lattice materials while for their macro/mesoscale counterparts, in-plane modes can also be analyzed as well as the out-of-plane ones. Four well-known topologies of hexagonal, triangular, square, and Kagonne are considered in the current paper and their wave propagation is investigated both in the plane of periodicity and in the out-of-plane direction. The finite element method is used to formulate the governing equations and Bloch's theorem is used to solve the dispersion relations. To investigate the effect of shear deformation, both the Timoshenko and Euler-Bernoulli beam theories are implemented. The results indicate that including shear deformation in wave propagation has a softening effect on the band diagrams of wave propagation and moves the dispersion branches to lower frequencies. It can also reveal some bandgaps that are not predicted without considering the shear deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据