3.8 Article

Modulation of Human Hydrogen Sulfide Metabolism by Micronutrients, Preliminary Data

期刊

NUTRITION AND METABOLIC INSIGHTS
卷 15, 期 -, 页码 -

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/11786388211065372

关键词

Cysteine; hydrogen sulfide; LC-MS/MS; l-cystine; micronutrients; pyridoxal 5-phosphate

向作者/读者索取更多资源

By supplementing with micronutrients, the endogenous release and signaling of hydrogen sulfide (H2S) can be modulated in humans, affecting homeostatic functions and disease development.
BACKGROUND: Hydrogen sulfide (H2S) is a pivotal gasotransmitter networking with nitric oxide (NO) and carbon monoxide (CO) to regulate basic homeostatic functions. It is released by the alternative pathways of transulfuration by the enzymes Cystathionine Beta Synthase (CBS) and Cystathionine Gamma Lyase (CSE), and by Cysteine AminoTransferase (CAT)/3-Mercaptopyruvate Sulfur Transferase (3MPST). A non-enzymatic, intravascular release is also in place. We retrospectively investigated the possibility to modulate the endogenous H2S release and signaling in humans by a dietary manipulation with supplemented micronutrients (L-cystine, Taurine and pyridoxal 5-phopsphate/P5P). METHODS: Patients referring for antiaging purposes underwent a 10-day supplementation. Blood was collected at baseline and after treatment and the metabolome was investigated by mass spectrometry to monitor the changes in the metabolites reporting on H2S metabolism and related pathways. RESULTS: Data were available from 6 middle aged subjects (2 women). Micronutrients increased 3-mercaptopyruvate (P = .03), reporting on the activity of CAT that provides the substrate for H2S release within mitochondria by 3MPST, decreased lanthionine (P = .024), reporting the release of H2S from CBS, and had no significant effect of H2S release from CSE. This is compatible with a homeostatic balancing. We also recorded a strong increase of reporters of H2S-induced pathways including 5-MethylTHF (P = .001) and SAME (P = .022), reporting on methylation capacity, and of BH4 (P = .021) and BH2 (P = .028) reporting on nitric oxide metabolism. These activations may be explained by the concomitant induction of non-enzymatic release of H2S. CONCLUSIONS: Although the current evidences are weak and will need to be confirmed, the effect of micronutrients was compatible with an increase of the H2S endogenous release and signaling within the control of homeostatic mechanisms, further endorsing the role of feeding in health and disease. These effects might result in a H2S boosting effect in case of defective activity of pathologic origin, which should be checked in duly designed clinical trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据