4.7 Article

Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 503, 期 1-2, 页码 238-246

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2016.01.062

关键词

The solvent-shift strategy; Humidity-induced solid-state crystallization; Molecular docking; Drug-polymer interactions; Water uptake

资金

  1. National Natural Science Foundation of China [81173009, J1210029]
  2. Technology Bureau in Shenyang [ZCJJ2013402]
  3. Project for New Century Excellent Talents of Ministry of Education [NCET-12-1015]
  4. Education Department of Liaoning Province [LJQ2015109]
  5. Scientific Research Foundation for the Returned Overseas Scholars in Shenyang Pharmaceutical University [GGJJ2014101]

向作者/读者索取更多资源

The solvent-shift strategy was used to identify appropriate polymers that inhibit humidity-induced solid-state crystallization of amorphous solid dispersions (ASDs). Lacidipine with the polymers, PVP-K30, HPMC-E5 or Soluplus, were combined to form amorphous solid dispersions prepared by solvent evaporation. The formulations were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) and were subjected to in vitro dissolution testing. The moisture had a significant impact on the amount dissolved for the solid dispersions. Molecular docking studies established that hydrogen bonding was critical for the stabilization of the solid dispersions. The rank order of the binding energy of the drug-polymer association was Soluplus (-6.21 kcal/mol) > HPMC-E5 (-3.21 kcal/mol) > PVP-K30 (-2.31 kcal/mol). PVP-K30 had the highest water uptake among the polymers, as did ASD system of lacidipine-PVP-K30 ASDs. In the Soluplus ASDs, with its strong drug-polymer interactions and low water uptake, moisture-induced solid-state crystallization was not observed. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据