4.7 Article

Mechanisms of cellular uptake and endosomal escape of calcium-siRNA nanocomplexes

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 515, 期 1-2, 页码 46-56

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2016.10.009

关键词

Nano particles; siRNA; Calcium; Cellular uptake

资金

  1. Focal Technological Area Program of the Israel National Nanotechnology Initiative (INNI) (Bio-inspired Nano-carriers for Sub-cellular Targeted Therapeutics)
  2. Claire and Harold Oshry Professor Chair in Biotechnology

向作者/读者索取更多资源

Ca2+-siRNA nanocomplexes represent a simple yet an effective platform for siRNA delivery into the cell cytoplasm, with subsequent successful siRNA-induced target gene silencing. Herein, we aimed to elucidate the roles played by calcium ions in siRNA nanocomplex formation, cell uptake, and endosomal escape. We investigated whether the replacement of Ca2+ in the nanocomplex by other bivalent cations would affect their cell entry and subsequent gene silencing. Our results indicate that Mg2+ and Ba2+ lead to the formation of nanocomplexes of similar physical features (size = 100 nm, surface charge zeta = -8 mV) as the Ca2+-siRNA nanocomplexes. Yet, these nanocomplexes were not uptaken by the cells to the same extent as those prepared with Ca2+, and siRNA-induced target gene silencing was not obtained. Cell internalization of Ca2+--siRNA nanocomplexes, examined by employing chemical inhibitors to clathrin-, caveolin-and dynamin-mediated endocytosis pathways, indicated the involvement of all mechanisms in the process. Inhibition of endosome acidification by bafilomycin completely abolished the siRNA-mediated silencing by Ca2+-siRNA nanocomplexes. Collectively, our results indicate that Ca2+ promotes cell internalization and rapid endosomal escape, thus leading to the efficient siRNA-induced target gene silencing elicited by the Ca2+-siRNA nanocomplexes. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据