4.7 Article

A facile Friedel-Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 502, 期 1-2, 页码 125-137

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2016.02.034

关键词

Multi-walled carbon nanotube; Friedel-Crafts acylation; Functionalization; Polyethylenimine; Gene delivery

资金

  1. Mashhad University of Medical Sciences
  2. Ferdowsi University of Mashhad

向作者/读者索取更多资源

Low chemical reactivity of carbon nanotubes is one of the major obstacles in their functionalization via chemical reactions. As a non-destructive method, Friedel-Crafts acylation was suggested among the explored reactions for which only a few methods have been reported under harsh reaction conditions, e.g., high temperature all leading to low yields. In this study, we propose a novel method for the acylation of multi-walled carbon nanotubes (MWCNTs) at a low temperature (i.e., 42 degrees C), using SiO2-Al2O3 as a catalyst and 6-bromohexanoic acid as the acylating agent to produce high yield functionalized MWCNTs. After acylation, MWCNTs are conjugated with polyethylenimines (PEIs) with three molecular weights (1.8, 10 and 25 kDa). Three different MWCNT-PEI conjugates are synthesized and evaluated for their condensation ability, viability, size and zeta potential properties. The transfection efficiency of the functionalized MWCNTs is evaluated using luciferase assay and flow cytometry in a Neuroblastoma cell line. MWCNT-PEI (10 kDa) conjugate shows the highest transfection efficacy compared to others. For this carrier transfection efficacy exceeds the amount of PEI 25 kDa at similar carrier to plasmid weight ratio (C/P) and is around 3 times higher compared to PEI 25 kDa at C/P = 0.8 as positive control regarding its high transfection efficiency and low cytotoxicity. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据