4.1 Article

In Vitro Synergistic Activities of the Hybrid Antimicrobial Peptide MelitAP-27 in Combination with Conventional Antibiotics Against Planktonic and Biofilm Forming Bacteria

出版社

SPRINGER
DOI: 10.1007/s10989-016-9530-z

关键词

Antimicrobial peptides; MelitAP-27; Antibiofilm peptides; Synergy

资金

  1. deanship of research at Jordan University of Science and Technology [288/2014]

向作者/读者索取更多资源

The extensive use of antibiotics for the treatment of human infections during the last few decades has led to a dramatic increase in the emergence of multidrug-resistant bacteria (MDRB) among various bacterial strains. Global research is currently focused on finding novel alternative agents with different mechanisms of action rather than the use of conventional antibiotics to counteract the threat of bacterial and biofilm infections. Antimicrobial peptides represent promising alternative agents for conventional antibiotics as these molecules display a broad spectrum of activity against several microorganisms. Recently, we have designed a novel hybrid antimicrobial peptide named MelitAP-27. This peptide has been found to display potent broad spectrum and selective in vitro antimicrobial activities against a wide range of Gram-positive and Gram-negative bacteria. In the present study, the in vitro antimicrobial and antibiofilm activities of the peptide alone and in combination with five different types of antibiotics were assessed against wild-type and resistant Gram-positive and Gram-negative bacterial strains. Our results showed that most of the combination groups displayed a synergistic mode of action against planktonic and biofilm forming bacteria which resulted in decreasing the effective MIC values for MelitAP-27 to the nanomolar concentrations. These effective concentrations were associated with negligible toxicities on mammalian cells. The results of our study indicate that combinations of MelitAP-27 with conventional antibiotics may be pursued as a potential novel treatment strategy against MDRB and biofilm forming bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据