4.0 Article

B-MFO: A Binary Moth-Flame Optimization for Feature Selection from Medical Datasets

期刊

COMPUTERS
卷 10, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/computers10110136

关键词

optimization; binary metaheuristic algorithms; swarm intelligence algorithms; feature selection; medical datasets; transfer function

向作者/读者索取更多资源

The paper proposed a binary moth-flame optimization (B-MFO) for selecting effective features from medical datasets, demonstrating superior performance compared to other comparative algorithms.
Advancements in medical technology have created numerous large datasets including many features. Usually, all captured features are not necessary, and there are redundant and irrelevant features, which reduce the performance of algorithms. To tackle this challenge, many metaheuristic algorithms are used to select effective features. However, most of them are not effective and scalable enough to select effective features from large medical datasets as well as small ones. Therefore, in this paper, a binary moth-flame optimization (B-MFO) is proposed to select effective features from small and large medical datasets. Three categories of B-MFO were developed using S-shaped, V-shaped, and U-shaped transfer functions to convert the canonical MFO from continuous to binary. These categories of B-MFO were evaluated on seven medical datasets and the results were compared with four well-known binary metaheuristic optimization algorithms: BPSO, bGWO, BDA, and BSSA. In addition, the convergence behavior of the B-MFO and comparative algorithms were assessed, and the results were statistically analyzed using the Friedman test. The experimental results demonstrate a superior performance of B-MFO in solving the feature selection problem for different medical datasets compared to other comparative algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据