4.5 Article

Pharmacological modulation of LMNA SRSF1-dependent splicing abrogates diet-induced obesity in mice

期刊

INTERNATIONAL JOURNAL OF OBESITY
卷 41, 期 3, 页码 390-401

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ijo.2016.220

关键词

-

资金

  1. French National Research Agency through the 'Investments for the Future' program [ANR-10-INSB-04]
  2. collaborative laboratory ABIVAX
  3. OSEO-ISI CaReNA grant
  4. Fondation pour la Recherche Medicale (FRM) grant [DEQ20111223745]
  5. EU [289007]
  6. Ministere Delegue a la Recherche et aux Technologies
  7. CNRS

向作者/读者索取更多资源

BAKGROUND/OBJECTIVES: Intense drug discovery efforts in the metabolic field highlight the need for novel strategies for the treatment of obesity. Alternative splicing (AS) and/or polyadenylation enable the LMNA gene to express distinct protein isoforms that exert opposing effects on energy metabolism and lifespan. Here we aimed to use the splicing factor SRSF1 that contribute to the production of these different isoforms as a target to uncover new anti-obesity drug. SUBJECTS/METHODS: Small molecules modulating SR protein activity and splicing were tested for their abilities to interact with SRSF1 and to modulate LMNA (AS). Using an LMNA luciferase reporter we selected molecules that were tested in diet-induced obese (DIO) mice. Transcriptomic analyses were performed in the white adipose tissues from untreated and treated DIO mice and mice fed a chow diet. RESULTS: We identified a small molecule that specifically interacted with the RS domain of SRSF1. ABX300 abolished DIO in mice, leading to restoration of adipose tissue homeostasis. In contrast, ABX300 had no effect on mice fed a standard chow diet. A global transcriptomic analysis revealed similar profiles of white adipose tissue from DIO mice treated with ABX300 and from untreated mice fed a chow diet. Mice treated with ABX300 exhibited an increase in O-2 consumption and a switch in fuel preference toward lipids. CONCLUSIONS: Targeting SRSF1 with ABX300 compensates for changes in RNA biogenesis induced by fat accumulation and consequently represents a novel unexplored approach for the treatment of obesity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据