4.0 Article

Flame Retardancy of Lightweight Sandwich Composites

期刊

JOURNAL OF COMPOSITES SCIENCE
卷 5, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/jcs5100274

关键词

patterned polyester nonwoven; unsaturated polyester resin; sandwich composites; smoke toxicity; heat release

资金

  1. company Lantor

向作者/读者索取更多资源

This study proposes a novel method using core material and resin for flame-retardant treatment, selects the optimal flame-retardant additives through experiments, and achieves the desired flame-retardant effect in sandwich panels.
This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant carrier, while the resin is also flame-retarded with aluminum trihydroxide (ATH). A screening of the fire-retardant performances of the core materials, covered with different types of phosphorous flame-retardant additives (phosphate, phosphinate, phosphonate), was performed using cone calorimetry. The best candidate was selected and evaluated in the sandwich panel. Great performances were obtained with ammonium polyphosphate (AP422) at 262 g/m(2). The core material, when tested alone, did not ignite, and when used in the laminate, improved the fire behaviour by decreasing the peak of heat release rate (pHRR) and the total heat release (THR): the second peak in HRR observed for the references (full glass monolith and sandwich with the untreated core) was suppressed in this case. This improvement is attributed to the interaction occurring between the two FR additives, which leads to the formation of aluminophosphates, as shown using Electron Probe Micro-Analysis (EPMA), X-ray Diffraction (XRD) and solid-state P-31 Nuclear Magnetic Resonance (NMR). The influence of the FR add-on on the core, as well as the ATH loading in the matrix, was studied separately to optimize the material performances in terms of smoke and heat release. The best compromise was obtained using AP422 at 182 g/m(2) and 160 phr of ATH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据