4.5 Article

Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection

Jennifer M. Dan et al.

Summary: Different components of immune memory to SARS-CoV-2 exhibit distinct kinetics, with antibodies and spike-specific memory B cells remaining relatively stable over 6 months, while CD4(+) T cells and CD8(+) T cells declining with a half-life of 3 to 5 months after infection.

SCIENCE (2021)

Article Biochemistry & Molecular Biology

Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera

Piyada Supasa et al.

Summary: Research on the UK-dominant variant B.1.1.7 shows that it is harder to neutralize than the parental virus, but widespread escape from antibodies or monoclonal antibodies has not been observed yet.
Article Biochemistry & Molecular Biology

Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera

Daming Zhou et al.

Summary: The race to develop vaccines against SARS-CoV-2 variants, such as B.1.1.7, B.1.351, and P.1, is ongoing as these variants have mutations in the spike protein, potentially leading to immune escape. A structure-function analysis of B.1.351 revealed tighter ACE2 binding and widespread evasion from monoclonal antibody neutralization, particularly driven by the E484K mutation.
Article Microbiology

SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines

Xiaoying Shen et al.

Summary: Current COVID-19 vaccines target the ancestral SARS-CoV-2 spike, but the emerging B.1.1.7 variant with multiple spike mutations may impact some antibody therapies while posing no major concerns for vaccine efficacy or increased risk of reinfection.

CELL HOST & MICROBE (2021)

Article Multidisciplinary Sciences

Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity

Carolina Lucas et al.

Summary: This study found that individuals previously infected with the virus had higher antibody titres post-vaccination compared to those who were uninfected, but both groups reached comparable levels of neutralization responses to the ancestral strain after the second vaccine dose. Comprehensive analysis of 16 locally circulating SARS-CoV-2 variants revealed varying degrees of reduction in neutralization capacity associated with specific mutations in the spike gene, suggesting vaccine boosters as a relevant future strategy to counteract the impact of emerging variants on antibody neutralizing activity.

NATURE (2021)

Article Multidisciplinary Sciences

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Pengfei Wang et al.

Summary: The COVID-19 pandemic has had global repercussions, with promising vaccines and monoclonal antibody therapies. However, newly detected variants of SARS-CoV-2 present challenges to these treatment options.

NATURE (2021)

Article Biochemistry & Molecular Biology

Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies

Rita E. Chen et al.

Summary: The study analyzed antibody neutralization activity against a panel of authentic isolates and chimeric SARS-CoV-2 variants, showing significantly reduced neutralizing activity against the B.1.351 variant first identified in South Africa. Antibodies targeting the receptor-binding domain and N-terminal domain, monoclonal antibodies, convalescent sera, and mRNA vaccine-induced immune sera exhibited decreased inhibitory activity against viruses with an E484K spike mutation, suggesting a need for updated monoclonal antibodies or vaccine adjustments to prevent loss of protection against emerging variants.

NATURE MEDICINE (2021)

Article Multidisciplinary Sciences

mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern

Rishi R. Goel et al.

Summary: This study found that immune memory to SARS-CoV-2 and its variants remains robust for at least 6 months after mRNA vaccination, with antibodies declining but still detectable in most individuals. mRNA vaccines also induced functional memory B cells and antigen-specific T cells, with recall responses primarily increasing antibody levels in individuals with preexisting immunity.

SCIENCE (2021)

Article Multidisciplinary Sciences

Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19

Adam K. Wheatley et al.

Summary: The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Antibody, B cell, and T cell responses decline over the first 4 months post-infection, while S-specific IgG(+) memory B cells consistently accumulate. The study suggests that natural infection may only provide transient protection at a population level, highlighting the need for more immunogenic and durable vaccines.

NATURE COMMUNICATIONS (2021)

Article Biochemistry & Molecular Biology

Antibody evasion by the P.1 strain of SARS-CoV-2

Wanwisa Dejnirattisai et al.

Summary: Ending the SARS-CoV-2 pandemic requires global vaccination. New virus strains with mutations impact antibody responses, but some variants are less resistant than others. A monoclonal antibody can neutralize different variants and partially restore neutralization potency for other public antibodies.
Article Microbiology

Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization

Pengfei Wang et al.

Summary: The emerging Brazilian variant P.1 shows increased resistance to antibody neutralization, posing a threat to current antibody therapies, but has less impact on the effectiveness of protective vaccines.

CELL HOST & MICROBE (2021)

Article Biochemistry & Molecular Biology

Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies

Delphine Planas et al.

Summary: The ability of convalescent sera from individuals with coronavirus disease 2019 and those vaccinated with BNT162b2 to neutralize SARS-CoV-2 variants B1.1.7 and B.1.351 decreases, but increases after two vaccine doses. The study found that the B.1.1.7 and B.1.351 variants may have acquired partial resistance to neutralizing antibodies generated by natural infection or vaccination, particularly in individuals with low antibody levels. This suggests that the B.1.351 variant may pose a greater risk of infection in immunized individuals.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

David S. Khoury et al.

Summary: The level of neutralizing antibodies is closely related to immune protection against COVID-19, playing a crucial role in protecting against detected infection and severe infection. Studies have shown that neutralizing titers will decline over time after vaccination, leading to decreased protection against SARS-CoV-2 infection.

NATURE MEDICINE (2021)

Letter Medicine, General & Internal

Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351

Xiaoying Shen et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Letter Medicine, General & Internal

SARS-CoV-2 Antibody Response in Persons with Past Natural Infection

Gabriele Anichini et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Medicine, General & Internal

Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant

S. A. Madhi et al.

Summary: The ChAdOx1 nCoV-19 vaccine did not provide significant protection against mild-to-moderate Covid-19 caused by the B.1.351 variant, with an efficacy of 10.4%. The incidence of serious adverse events was balanced between the vaccine and placebo groups.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection

Leonidas Stamatatos et al.

Summary: The study found that vaccination of both previously infected individuals and those who were not infected resulted in increased neutralizing antibody titers, with previously infected individuals showing a greater boost in neutralizing titers. Vaccination of naive individuals also elicited cross-neutralizing responses, but at lower titers.

SCIENCE (2021)

Article Immunology

Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals after mRNA vaccination

Rishi R. Goel et al.

Summary: mRNA vaccines exhibit robust serological and cellular priming, with naïve individuals requiring two doses for optimal antibody responses, especially against the B.1.351 variant. Memory B cells specific for spike protein and RBD were efficiently primed by vaccination, while recovered individuals showed significant boosting after the first dose, correlating with preexisting memory B cell levels. Identifying distinct responses based on prior SARS-CoV-2 exposure suggests that recovered subjects may only need one vaccine dose for peak responses, which can inform vaccine distribution strategies in resource-limited settings.

SCIENCE IMMUNOLOGY (2021)

Article Biochemistry & Molecular Biology

Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum

Chang Liu et al.

Summary: Recent study examined the neutralizing ability of monoclonal antibodies, convalescent and vaccine sera against the Indian variants B.1.617.1 and B.1.617.2, showing that the neutralization of these variants is reduced compared to the ancestral strains, without widespread antibody escape as seen in other variants like B.1.351.
Review Immunology

Accelerated COVID-19 vaccine development: milestones, lessons, and prospects

Karin Bok et al.

Summary: The US government's successful effort in developing COVID-19 vaccines involved integrating expertise and infrastructure from both the public and private sectors, resulting in the rapid advancement of multiple vaccine candidates being administered globally.

IMMUNITY (2021)

Letter Medicine, General & Internal

AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC

Emma C. Wall et al.

LANCET (2021)

Article Multidisciplinary Sciences

Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization

Delphine Planas et al.

Summary: The SARS-CoV-2 B.1.617 Delta variant, first identified in India in 2020, has become dominant in some regions and is spreading to many countries. This variant shows resistance to certain monoclonal antibodies and antibodies in convalescent sera, as well as reduced neutralization by some COVID-19 vaccines. Administration of two doses of the vaccine is needed for a neutralizing response against the Delta variant.

NATURE (2021)

Article Multidisciplinary Sciences

COVID boosters for wealthy nations spark outrage

Amy Maxmen

NATURE (2021)

Editorial Material Medicine, General & Internal

Vaccine Effectiveness Studies in the Field

Stephen J. W. Evans et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Medicine, General & Internal

Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine

Paul T. Heath et al.

Summary: The NVX-CoV2373 vaccine demonstrated an efficacy of 89.7% in a phase 3 trial with over 15,000 participants, with mild and transient reactogenicity. It showed high efficacy against the B.1.1.7 variant and a low incidence of adverse events.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Letter Medicine, General & Internal

Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants

Venkata-Viswanadh Edara et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Editorial Material Immunology

Immune imprinting and SARS-CoV-2 vaccine design

Adam K. Wheatley et al.

Summary: Reformulating SARS-CoV-2 vaccines with variant strains may not be optimal due to immune imprinting from earlier vaccinations or infections with the original strain. New strategies are needed to improve the efficacy of SARS-CoV-2 variant vaccines.

TRENDS IN IMMUNOLOGY (2021)

Article Multidisciplinary Sciences

Immune response to SARS-CoV-2 variants of concern in vaccinated individuals

Matthias Becker et al.

Summary: This study characterizes the antibody response from vaccinated, infected, and uninfected individuals against emerging variants of concern of SARS-CoV-2, indicating reduced neutralization of a South African isolate. High IgG titers in the saliva of vaccinees suggest reduced transmission potential.

NATURE COMMUNICATIONS (2021)

Article Biology

Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains

Nikhil Faulkner et al.

Summary: The study found that antibodies elicited by infection with the B.1.1.7 variant exhibited significantly reduced recognition and neutralization of parental strains or the South Africa variant B.1.351, indicating an asymmetric heterotypic immunity induced by SARS-CoV-2 variants.
Article Public, Environmental & Occupational Health

Reduced Risk of Reinfection with SARS-CoV-2 After COVID-19 Vaccination — Kentucky, May–June 2021

Alyson M. Cavanaugh et al.

MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT (2021)

Review Immunology

Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models

David S. Khoury et al.

NATURE REVIEWS IMMUNOLOGY (2020)