4.4 Article

Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate Peclet Numbers

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijnsns-2015-0056

关键词

steady-state mass transport; convection; diffusion; microchannel

资金

  1. Biotechnology and Biological Sciences Research Council (BBSRC)
  2. European Research Council (ERC)
  3. Frances and Augustus Newman Foundation
  4. Swiss National Science Foundation

向作者/读者索取更多资源

Conventional approaches for simulating steady-state distributions of dilute particles under diffusive and advective transport involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at intermediate and high Peclet numbers (Pe > 1) where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative agreement of the predicted concentration profiles with the results of experiments performed with fluorescent particles in microfluidic channels under continuous flow. This approach is computationally advantageous and readily allows non-trivial initial distributions to be considered. In particular, this method is highly suitable for simulating advective and diffusive transport in microfluidic devices, for instance in the context of diffusive sizing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据