4.1 Article

Robotic Assembly of Timber Structures in a Human-Robot Collaboration Setup

期刊

FRONTIERS IN ROBOTICS AND AI
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/frobt.2021.768038

关键词

learning by demonstration; assembly of timber structures; digital twin; robotic assembly; robotic fabrication

类别

向作者/读者索取更多资源

This paper presents a framework for the design and robotic assembly of timber structures. The study incorporates learning by demonstration to automate the complex assembly of wooden joints and enables new designs of construction elements previously only possible by skilled craftsmen. The research provides an overview of different focus levels, from digital twin integration to timber joint design and robotic assembly execution, and explores synergistic results in both robotic and construction design innovation, with a perspective on future developments.
The construction sector is investigating wood as a highly sustainable material for fabrication of architectural elements. Several researchers in the field of construction are currently designing novel timber structures as well as novel solutions for fabricating such structures, i.e. robot technologies which allow for automation of a domain dominated by skilled craftsman. In this paper, we present a framework for closing the loop between the design and robotic assembly of timber structures. On one hand, we illustrate an extended automation process that incorporates learning by demonstration to learn and execute a complex assembly of an interlocking wooden joint. On the other hand, we describe a design case study that builds upon the specificity of this process, to achieve new designs of construction elements, which were previously only possible to be assembled by skilled craftsmen. The paper provides an overview of a process with different levels of focus, from the integration of a digital twin to timber joint design and the robotic assembly execution, to the development of a flexible robotic setup and novel assembly procedures for dealing with the complexity of the designed timber joints. We discuss synergistic results on both robotic and construction design innovation, with an outlook on future developments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据