4.7 Article

State-of-the-art in surface integrity in machining of nickel-based super alloys

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2015.10.001

关键词

Machining; Surface integrity; Nickel-based super alloys; Microstructural alterations; Fatigue life; Cutting parameters

向作者/读者索取更多资源

Nickel-based super alloys are gaining more significance, now-a-days, with extensive applications in aerospace, marine, nuclear reactor and chemical industries. Several characteristics including superior mechanical and chemical properties at elevated temperature, high toughness and ductility, high melting point, excellent resistance to corrosion, thermal shocks, thermal fatigue and erosion are primarily responsible for wide domain of application. Nevertheless, machined surface integrity of nickel-based super alloys is a critical aspect which influences functional performance including fatigue life of the component. This review paper presents state-of-the-art on various surface integrity characteristics during machining of nickel-based super alloys. Influence of various cutting parameters, cutting environment, coating, wear and edge geometry of cutting tools on different features of surface integrity has been critically explained. These characteristics encompass surface roughness, defects (surface cavities, metal debris, plucking, smeared material, redeposited material, cracked carbide particles, feed marks, grooves and laps), metallurgical aspects in the form of surface and sub-surface microstructure phase transformation, dynamic recrystallisation and grain refinement and mechanical characteristics such as work hardening and residual stress. Microstructural modification of deformed layer, profile of residual stresses and their influence on fatigue durability have been given significant emphasis. Future research endeavour might focus on development of new grades, advanced processing techniques of the same to ensure their superior stability of microstructure and thermo-mechanical properties along with advanced manufacturing processes like additive manufacturing to achieve highest level of fatigue durability of safety critical components while maintaining acceptable surface integrity and productivity. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据