4.5 Article

Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil

期刊

HELIYON
卷 8, 期 1, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2021.e08690

关键词

Carbon storage; Mean weight diameter; Lime; Ammonium sulphate; Ammonium nitrate; Soil aggregates

资金

  1. National Research Foundation [122198]

向作者/读者索取更多资源

This study aims to investigate the long-term effects of nitrogen fertilization and liming on soil carbon storage and its dynamics in a semi-arid grassland. The results showed that nitrogen fertilization decreased organic carbon content in the soil, while liming had no effect on organic carbon and aggregate size. Additionally, the combination of lime and nitrogen fertilizer increased carbon storage. Long-term nitrogen fertilization may lead to poor soil physical condition and potential stabilization of carbon in stable aggregates.
Grasslands cover up to 40.5% of the world's landmass and store 30% terrestrial carbon (C). Various practices, including mineral fertilization and liming, are used to manage these ecosystems with potential long-term effects on the size and distribution of soil aggregates and inevitably carbon dynamics. The objective of this study was to examine the long-term effects of (nitrogen fertilization and liming on soil carbon storage and its dynamics in water-stable) aggregates of a semi-arid grassland. Soil samples (0-10 cm) were collected from Ukulinga long-term grassland trial in Pietermaritzburg, South Africa where nitrogen fertilizers have been applied annually and lime every five years for 70 years. Ten treatments were studied: the control (0 kgN/ha and unlimited), lime at 2250 kg/ha (L), ammonium sulphate at 70 kg/ha (AS70) and 211 kg/ha (AS211); ammonium nitrate at 70 kg/ha (AN70) and 211 kg/ha (AN211); AS70 + lime (AS70L); AS211 + lime (AS211L); AN70 + lime (AN70L) and AN211 + lime (AN211L). Nitrogen fertilizers significantly reduced soil pH and increased total soil N. Liming increased soil pH with no effect on total soil N. Lime and lime + N fertilizer treatments had no effect on mean weight diameter (MWD) while separate N application decreased MWD and large macro-aggregates (LMA). Lime only treatment had no effect on water stable aggregate (WSA) fractions. Nitrogen fertilization and liming (separately or in combination) did not affect total C concentration and stocks. Overall, soils had very high total soil organic carbon ranging from 49.7 - 57.6 g/kg across treatments. Nitrogen fertilization decreased organic carbon in LMA in AS70 (1.52%) and AN211 (1.67%) treatments compared to the control (3.40%) which was in concert with increases in C associated with small macro-aggregates (SMA) and micro-aggregates (MiA and SCA). Organic carbon in SMA was 2.67 % (AS70); AS211 (2.62 %); AN70 (2.02 %); AN211 (2.49 %) compared to 1.26 % in the control. Lime + N fertilizer treatments increased C storage in all aggregate fractions compared to N fertilizer only treatments. The lack of response in total SOC to 70 years of N fertilization and liming suggests possible C saturation given the high soil C concentration. Changes in C associated with WSA fractions suggests their importance as diagnostic indicators of N fertilization and liming induced changes in SOC. Findings also show that ammonium-based N fertilization is associated with soil acidification, dispersion of LMA resulting in an increase of microaggregates and C stored in them. Liming can counteracts acidifying and the dispersive effect on NH4+ associated with ammonium-based fertilizers thus restoring macro-aggregation in N fertilized grasslands. These findings suggests that long-term N addition may result in poor soil physical condition and possible stabilization of C in stable fractions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据