4.7 Article

A new rate-dependent stress-based nonlocal damage model to simulate dynamic tensile failure of quasi-brittle materials

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijimpeng.2016.04.002

关键词

Concrete; Tensile failure; Damage; Rate-dependent; Stress-based nonlocal

资金

  1. Portuguese Fundacao para a Ciencia e Tecnologia (FCT), Lisbon, Portugal [SFRH/BD/79451 /2011]
  2. European Social Fund
  3. Programa Operacional Potencial Humano (POPH)
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/79451/2011] Funding Source: FCT

向作者/读者索取更多资源

The development of realistic numerical tools to efficiently model the response of concrete structures subjected to close-in detonations and high velocity impact has been one of the major quests in defense research. Under these loading conditions, quasi-brittle materials undergo a multitude of failure (damage) mechanisms. Dynamic tensile failure (e.g. spalling), characterized by a significant strength increase associated with loading rate, has revealed to be particularly challenging to represent. In this contribution, a rate-dependent stress-based nonlocal damage model has been introduced for the simulation of dynamic tensile failure of quasi-brittle materials. The recently proposed stress-based nonlocal criterion has been updated in order to be consistently combined with a rate-dependent version of the well-known Mazars damage model. The model was implemented in LS-DYNA using a fully explicit computational scheme. Two sets of numerical examples have been presented. First, one-dimensional numerical analyses were conducted to evaluate the model capabilities, applicability and limitations. Second, the model has been validated against experimental results. It has been shown that the proposed model, in addition to correcting spurious mesh sensitivity, also provides a more realistic representation of damage initiation and growth, in particular around discontinuities (notches and free boundaries) and damaged areas. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据