4.7 Article

Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel

期刊

ADVANCED COMPOSITES AND HYBRID MATERIALS
卷 5, 期 2, 页码 1003-1016

出版社

SPRINGERNATURE
DOI: 10.1007/s42114-021-00413-y

关键词

Magnetic graphene aerogel; Polyaniline nanoarrays; Magnetoresistance; Piezoresistance

向作者/读者索取更多资源

A novel three-dimensional nanocomposite aerogel with outstanding magnetoresistance and piezoresistance was manufactured by surrounding magnetic reduced graphene oxide (rGO/Fe3O4) aerogel with in-situ polymerized polyaniline nanoarrays (PANI NAs). The aerogel exhibited excellent mechanical strength, preserved its porous structure, and showed a promising performance in terms of recovery ratio, piezoresistive performance, and magnetoresistance.
Herein, a novel three-dimensional nanocomposite aerogel (rGO/Fe3O4/PANI NAs) with outstanding magnetoresistance and piezoresistance was manufactured by the in-situ polymerized polyaniline nanoarrays (PANI NAs) surrounding magnetic reduced graphene oxide (rGO/Fe3O4) aerogel that was prepared through the combination of hydrothermal method and lyophilization method. This rGO/Fe3O4/PANI NAs nanocomposite aerogel with 60 wt.% loading of PANI NAs well preserved the porous structure and gained a superior mechanical strength (121.04 kPa) compared with that of rGO aerogel, rGO/Fe3O4 aerogel, and rGO/PANI NAs aerogel (43.54, 58.12, and 116.98 kPa, respectively). The rGO/Fe3O4/PANI NAs nanocomposite aerogel could hold its original state with almost 100% recovery ratio after cycling compression tests under 80% of deformation strain at a suitable compression rate of 5 mm min(-1). The introduction of PANI NAs into the rGO/Fe3O4 aerogel also brought a satisfactory piezoresistive performance with a large gauge factor up to 2.83 and a superb stability for the electrical signal output (which was decreased only 5.80% after 500 compression cycles) to the rGO/Fe3O4/PANI NAs nanocomposite aerogel. The loading of Fe3O4 and PANI NAs also provided rGO/Fe3O4/PANI NAs nanocomposite aerogel with a negative magnetoresistance value up to - 4.37%. The magnetoresistance was explained via the amelioration of spin transport in the material. The unique negative magnetoresistance and excellent piezoresistance make rGO/Fe3O4/PANI NAs nanocomposite aerogel a promising candidate for the development of advanced electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据