4.7 Article

Characterization of Divalent Cation Interactions with AASTY Nanodiscs

期刊

ACS APPLIED POLYMER MATERIALS
卷 4, 期 2, 页码 1071-1083

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.1c01507

关键词

native nanodiscs; divalent cation tolerance; AASTY copolymers; poly(acrylic acid-co-styrene); polymer chemistry; lipid biophysics

资金

  1. Novo Nordisk Foundation
  2. Carlsberg Foundation [CF20-0533, NNF18OC0030896]
  3. Stanford Bio-X Program [0171-00081B]
  4. Independent Research Fund Denmark [R265-2017-4015]
  5. Lundbeck Foundation

向作者/读者索取更多资源

Amphiphilic copolymers have the potential to extract membrane proteins directly from lipid bilayers into native nanodiscs. However, many such copolymers are polyanionic and sensitive to divalent cations. In this study, we characterized the Ca2+ and Mg2+ sensitivity of poly(acrylic acid-co-styrene) (AASTY) copolymers and found that divalent cations promote aggregation and precipitation of both free and lipid-bound copolymers. Excess, free copolymer acts as a cation sink that protects nanodiscs from Ca2+-induced aggregation. Removal of the free copolymer induces aggregation, which can be mitigated by KCl. Our findings also revealed that the size of the nanodiscs is dynamic and dependent on lipid concentration.
Amphiphilic copolymers show promise in extracting membrane proteins directly from lipid bilayers into native nanodiscs. However, many such copolymers are polyanionic and sensitive to divalent cations, limiting their applicability. We characterize the Ca2+ and Mg2+ sensitivity of poly(acrylic acid-co-styrene) (AASTY) copolymers with analytical UV and fluorescent size exclusion chromatography, enabling us to separate signals from nanodiscs, copolymers, and soluble aggregates. We find that divalent cations promote aggregation and precipitation of both free and lipid bound copolymers. We see that excess, free copolymer acts as a cation sink that protects nanodiscs from Ca2+ induced aggregation. Removal of the free copolymer through dialysis induces aggregation that can be mitigated by KCl. Finally, we find that the nanodisc size is dynamic and dependent on lipid concentration. Our results offer insight into nanodisc behavior and can help guide experimental design aimed at mitigating the shortcomings inherent in negatively charged nanodisc forming copolymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据