4.6 Article

Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests

期刊

ECOLOGICAL PROCESSES
卷 11, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s13717-021-00349-7

关键词

Carbon fluxes; Net ecosystem productivity; Ecosystem respiration; Extreme weather events; Drought; Temperate forest; White pine; Eddy covariance

资金

  1. Natural Sciences and Engineering Research Council (NSREC)
  2. Global Water Futures Program (GWF)
  3. Ontario Ministry of Environment, Conservation and Parks (MOECP)

向作者/读者索取更多资源

This study examines the impact of heat and drought events on carbon sequestration in different-aged eastern white pine forests in Ontario, Canada. The results show that air temperature is the main controlling factor of carbon sequestration in these forests, and drought has a smaller effect. However, the simultaneous occurrence of heat and drought events during the early growing seasons or consecutive years has a significant negative impact on annual carbon sequestration.
Background Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. Results Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 +/- 96, 538 +/- 177 and 64 +/- 165 g C m(-2) yr(-1) in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. Conclusions Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据