4.1 Article

Antifreeze proteins as gas hydrate inhibitors

期刊

CANADIAN JOURNAL OF CHEMISTRY
卷 93, 期 8, 页码 839-849

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/cjc-2014-0538

关键词

tetrahydrofuran; kinetic hydrate inhibitors; antifreeze proteins; oil and gas recovery; green inhibitors

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. National Research Council

向作者/读者索取更多资源

Certain organisms survive low temperatures using a range of physiological changes including the production of antifreeze proteins (AFPs), which have evolved to adsorb to ice crystals. Several of these proteins have been purified and shown to also inhibit the crystallization of clathrate hydrates. They have been found to be effective against structure II (sII) hydrates formed from the liquid tetrahydrofuran, sI and sII gas hydrates formed from single gases, as well as sII natural gas hydrates using a mixture of three gases, as assessed using a variety of instrumentation including stirred reactors, differential scanning calorimetry, nuclear magnetic resonance, Raman spectroscopy, and X-ray powder diffraction. For the most part, AFPs are equal to or more effective than the commercial kinetic hydrate inhibitor (KHI) polyvinylpyrolidone, even under field conditions where saline and liquid hydrocarbons are present. Enclathrated gas analysis has revealed that the adsorption of AFPs to the hydrate surface is distinct from tested commercial KHIs and results in properties that should make these proteins more valuable in some field applications. Efforts to overcome the difficulties of recombinant protein production are ongoing, but in silico models of AFP adsorption to hydrates may offer the opportunity to design commercial KHIs for hydrocarbon recovery and transport with all the attributes of these AFP green inhibitors, including their benefits for human and environmental safety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据