4.5 Article

SMO-Based Sensorless Control of a Permanent Magnet Synchronous Motor

期刊

FRONTIERS IN ENERGY RESEARCH
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2022.839329

关键词

permanent magnet synchronous motor (PMSM); sliding mode observer (SMO); phase-locked loop (PLL); speed and position estimation; sensorless control

向作者/读者索取更多资源

This article proposes a sliding mode observer with phase-locked loop (PLL) to reduce chattering and improve the accuracy of rotor speed and position estimation. The observer accurately estimates the back electromotive force (EMF) and compensates for phase lag to obtain more accurate speed estimation.
In order to reduce the chattering caused by the discontinuity of the control function in the traditional sliding mode observer (SMO), this article proposes a sliding mode observer with phase-locked loop (PLL) to estimate the speed and position of the rotor. The back electromotive force (EMF) of a permanent magnet synchronous motor (PMSM) in a static coordinate system is accurately estimated by SMO, and then, PLL is constructed to combine the observed rotor position angle and back EMF to compensate the phase lag in angle estimation so as to obtain a more accurate speed. It solves the problems of poor robustness and complex algorithms in the traditional SMO prediction algorithm. The simulation results show that the SMO with PLL can effectively reduce the system chattering and effectively improve the accuracy of rotor speed and position estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据