4.5 Review

Smart and Solar Greenhouse Covers: Recent Developments and Future Perspectives

期刊

FRONTIERS IN ENERGY RESEARCH
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2021.783587

关键词

greenhouses; smart and intelligent materials; photovoltaics; solar cells; internet of things

向作者/读者索取更多资源

The development of smart greenhouse covers using solar energy and intelligent technology has significant implications for commercial agriculture, reducing operational costs and improving energy efficiency.
The examination of recent developments and future perspectives on smart and solar greenhouse covers is significant for commercial agriculture given that traditional greenhouse relied on external energy sources and fossil fuels to facilitate lighting, heating and forced cooling. The aim of this review article was to examine smart and solar materials covering greenhouse. However, the scope was limited to intelligent PhotoVoltaic (PV) systems, optimization of some material properties including smart covers, heat loading and the use of Internet of Things (IoT) to reduce the cost of operating greenhouse. As such, the following thematic areas were expounded in the research; intelligent PV systems, optimization of the Power Conversion Efficiency (PCE), Panel Generator Factor (PGF) and other material properties, heat loading future outlook and perspectives. The intelligent PV section focused on next-generation IoT and Artificial Neural Networks (ANN) systems for greenhouse automation while the optimization of material parameters emphasized quantum dots, semi-transparent organic solar cells, Pb-based and Pb-based PVs and three dimensional (3D) printing. The evaluation translated to better understanding of the future outlook of the energy-independent greenhouse. Greenhouse fitted with transparent PV roofs are a sustainable alternative given that the energy generated was 100% renewable and economical. Conservative estimates further indicated that the replacement of conventional sources of energy with solar would translate to 40-60% energy cost savings. The economic savings were demonstrated by the Levelized cost of energy. A key constraint regarded the limited commercialization of emerging innovations, including transparent and semitransparent PV modules made of Pb-quantum dots, and amorphous tungsten oxide (WO3) films, with desirable electrochromic properties such as reversible color changes. In addition to intelligent energy harvesting, smart IoT-based materials embedded with thermal, humidity, and water sensors improved thermal regulation, frost mitigation and prevention, and the management of pests and disease. In turn, this translated to lower post-harvest losses and better yields and revenues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据