4.7 Article

Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms

期刊

出版社

SCIENCE PRESS
DOI: 10.1016/j.jrmge.2021.07.013

关键词

Blasting mean fragment size; e-support vector regression (e-SVR); V-support vector regression (v-SVR); Meta-heuristic algorithms; Intelligent prediction

资金

  1. National Natural Science Foundation of China [42177164]
  2. InnovationDriven Project of Central South University [2020CX040]
  3. China Scholarship Council [202006370006]

向作者/读者索取更多资源

The main purpose of blasting operations is to produce desired and optimum mean size rock fragments to improve production efficiency and reduce costs. AI-based models are popular for predicting blasting fragmentation, with the Grey Wolf Optimization Support Vector Regression model showing the best comprehensive performance.
The main purpose of blasting operation is to produce desired and optimum mean size rock fragments. Smaller or fine fragments cause the loss of ore during loading and transportation, whereas large or coarser fragments need to be further processed, which enhances production cost. Therefore, accurate prediction of rock fragmentation is crucial in blasting operations. Mean fragment size (MFS) is a crucial index that measures the goodness of blasting designs. Over the past decades, various models have been proposed to evaluate and predict blasting fragmentation. Among these models, artificial intelligence (AI)based models are becoming more popular due to their outstanding prediction results for multi-influential factors. In this study, support vector regression (SVR) techniques are adopted as the basic prediction tools, and five types of optimization algorithms, i.e. grid search (GS), grey wolf optimization (GWO), particle swarm optimization (PSO), genetic algorithm (GA) and salp swarm algorithm (SSA), are implemented to improve the prediction performance and optimize the hyper-parameters. The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques. Among all the models, the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation. Three types of mathematical indices, i.e. mean square error (MSE), coefficient of determination (R-2) and variance accounted for (VAF), are utilized for evaluating the performance of different prediction models. The R-2, MSE and VAF values for the training set are 0.8355, 0.00138 and 80.98, respectively, whereas 0.8353, 0.00348 and 82.41, respectively for the testing set. Finally, sensitivity analysis is performed to understand the influence of input parameters on MFS. It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength. (C) 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据