4.6 Article

Error mitigation with Clifford quantum-circuit data

期刊

QUANTUM
卷 5, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2021-11-26-592

关键词

-

向作者/读者索取更多资源

A novel error-mitigation method for gate-based quantum computers is proposed in this study, which generates training data in quantum circuits and fits a linear ansatz to predict noise-free observables for arbitrary circuits. The method achieves an order-of-magnitude error reduction under various conditions.
Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gatebased quantum computers. The method generates training data {X-i(noisy), X-i(exact)} via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where X-i(noisy) and X-i(noisy) are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据