4.7 Article

Laser-Induced Graphene Based Flexible Electronic Devices

期刊

BIOSENSORS-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/bios12020055

关键词

laser-induced graphene (LIG); flexible electronics; biosensor; health monitoring; electrode

资金

  1. National Natural Science Foundation of China [12072030]

向作者/读者索取更多资源

This paper reviews the recent progress and applications of laser-induced graphene (LIG) in various fields such as mechanical sensors, temperature and humidity sensors, and electrochemical sensors. The advantages of LIG in flexible design, excellent electrical conductivity, and diverse choice of substrates are highlighted, and the remaining challenges and opportunities of LIG are discussed.
Since it was reported in 2014, laser-induced graphene (LIG) has received growing attention for its fast speed, non-mask, and low-cost customizable preparation, and has shown its potential in the fields of wearable electronics and biological sensors that require high flexibility and versatility. Laser-induced graphene has been successfully prepared on various substrates with contents from various carbon sources, e.g., from organic films, plants, textiles, and papers. This paper reviews the recent progress on the state-of-the-art preparations and applications of LIG including mechanical sensors, temperature and humidity sensors, electrochemical sensors, electrophysiological sensors, heaters, and actuators. The achievements of LIG based devices for detecting diverse bio-signal, serving as monitoring human motions, energy storage, and heaters are highlighted here, referring to the advantages of LIG in flexible designability, excellent electrical conductivity, and diverse choice of substrates. Finally, we provide some perspectives on the remaining challenges and opportunities of LIG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据