4.7 Article

Novel Micro-Nano Optoelectronic Biosensor for Label-Free Real-Time Biofilm Monitoring

期刊

BIOSENSORS-BASEL
卷 11, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/bios11100361

关键词

bacteria biofilm; optoelectronic device; antimicrobial resistance; biosensing

资金

  1. POR Puglia FESR FSR 20142020Action 10.4Research for Innovation (REFIN) Initiative

向作者/读者索取更多资源

In the following decades, AMR is expected to become one of the leading causes of death worldwide. Overuse of antibiotics has led to their ineffectiveness, particularly in the presence of bacterial biofilms. A novel optoelectronic device based on optical and electrical measurements has been designed for monitoring the evolution of bacterial biofilms.
According to the World Health Organization forecasts, AntiMicrobial Resistance (AMR) is expected to become one of the leading causes of death worldwide in the following decades. The rising danger of AMR is caused by the overuse of antibiotics, which are becoming ineffective against many pathogens, particularly in the presence of bacterial biofilms. In this context, non-destructive label-free techniques for the real-time study of the biofilm generation and maturation, together with the analysis of the efficiency of antibiotics, are in high demand. Here, we propose the design of a novel optoelectronic device based on a dual array of interdigitated micro- and nanoelectrodes in parallel, aiming at monitoring the bacterial biofilm evolution by using optical and electrical measurements. The optical response given by the nanostructure, based on the Guided Mode Resonance effect with a Q-factor of about 400 and normalized resonance amplitude of about 0.8, allows high spatial resolution for the analysis of the interaction between planktonic bacteria distributed in small colonies and their role in the biofilm generation, calculating a resonance wavelength shift variation of 0.9 nm in the presence of bacteria on the surface, while the electrical response with both micro- and nanoelectrodes is necessary for the study of the metabolic state of the bacteria to reveal the efficacy of antibiotics for the destruction of the biofilm, measuring a current change of 330 nA when a 15 mu m thick biofilm is destroyed with respect to the absence of biofilm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据