4.7 Article

Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applications

期刊

SURFACES AND INTERFACES
卷 28, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2021.101641

关键词

Anticancer; Antibacterial; Sensing; Synthesis; Tungsten oxide

向作者/读者索取更多资源

This article reviews the synthesis methods, physicochemical properties, and biomedical applications of metal-doped WO(x)NPs and hybrid WOx nanocomposites.
Tungsten oxide (WOx) is one of the most important and commonly used n-type wide band-gap oxygen-deficient metal oxide semiconductors with several important physicochemical properties, which enabled them to be used in numerous biomedical applications. Recently, researchers have demonstrated that: (I) suitable modifications in their dimension, crystal structure and morphology by doping metals into the WOx lattice framework play a critical role in improving their applications by tuning the physicochemical properties; (ii) metal doped WOx nanoparticles (NPs) can generate reactive oxygen species (ROS) upon absorption of NIR light even in the absence of photosensitizer and molecular oxygen; (iii) doping of noble metals into WOx films increase their electrical conductivity for improved electrochemical sensing; and (iv) the binary and ternary conjugates of WOx or tungsten-bronze exhibit increased photoelectric conversion ability and ROS production rate as well as improved photothermal conversion efficiency. However, no comprehensive review article has been reported yet on metal-doped WO(x)NPs and hybrid WOx nanocomposites. Therefore, herein we aimed to discuss firstly the several methods of metal-doped and hybrid WO(x)NPs synthesis such as precipitation, hydrothermal, microwave and solvothermal methods, etc. with appropriate conditions that control their size, shape, crystal structure and defects upon which the physicochemical properties depend. After that, we have discussed about some of their important physicochemical properties. Finally, we thoroughly reviewed the biomedical applications of WO(x)NPs in the field of biosensing, imaging, antibacterial and anticancer therapy with probable mechanisms. Finally, we have discussed the lacunae and the anticipated applications of WO(x)NPs. This review will provide a platform for understanding the different synthesis routes and the mechanistic details of the biomedical applications of metaldoped/hybrid WO(x)NPs to design novel nanocomposites with improved physico-chemical properties for their future applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据