4.6 Article

Development of an SNP Assay for Marker-Assisted Selection of Soil-Borne Rhizoctonia solani AG-2-2-IIIB Resistance in Sugar Beet

期刊

BIOLOGY-BASEL
卷 11, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/biology11010049

关键词

Rhizoctonia solani; sugar beet; plant breeding; marker-assisted selection; RAD sequencing; SNP discovery; PCA biplot; SNP validation

类别

资金

  1. Veneto Region
  2. Cariparo Foundation (Italy)

向作者/读者索取更多资源

The study identified an SNP marker linked to Rhizoctonia resistance in sugar beet, which can assist in breeding more disease-resistant varieties, saving time and resources for the breeding programs.
Simple Summary Sustainable breeding of sugar beet against Rhizoctonia solani relies on the continuous identification of resistance genes to allow their integration into new and modern cultivars. Better control of the disease may thus be achieved by a combination of tolerant or resistant cultivars selected based on molecular markers such as SNPs. The utility of one such marker, RsBv1 (Chromosome 6, 9,000,093 bp, C/T), located in an ADP-ribosylation factor and associated with Rhizoctonia resistance resulting from validation of three geographically diverse plant materials is reported. Rhizoctonia solani, causing Rhizoctonia crown and root rot, is a major risk to sugar beet (Beta vulgaris L.) cultivation. The development of resistant varieties accelerated by marker-assisted selection is a priority of breeding programs. We report the identification of a single-nucleotide polymorphism (SNP) marker linked to Rhizoctonia resistance using restriction site-associated DNA (RAD) sequencing of two geographically discrete sets of plant materials with different degrees of resistance/susceptibility to enable a wider selection of superior genotypes. The variant calling pipeline utilized SAMtools for variant calling and the resulting raw SNPs from RAD sequencing (15,988 and 22,439 SNPs) were able to explain 13.40% and 25.45% of the phenotypic variation in the two sets of material from different sources of origin, respectively. An association analysis was carried out independently on both the datasets and mutually occurring significant SNPs were filtered depending on their contribution to the phenotype using principal component analysis (PCA) biplots. To provide a ready-to-use marker for the breeding community, a systematic molecular validation of significant SNPs distributed across the genome was undertaken to combine high-resolution melting, Sanger sequencing, and rhAmp SNP genotyping. We report that RsBv1 located on Chromosome 6 (9,000,093 bp) is significantly associated with Rhizoctonia resistance (p < 0.01) and able to explain 10% of the phenotypic disease variance. The related SNP assay is thus ready for marker-assisted selection in sugar beet breeding for Rhizoctonia resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据