4.7 Article

Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02858-9

关键词

-

资金

  1. Intramural Research Program of the U.S. National Library of Medicine at the National Institutes of Health

向作者/读者索取更多资源

The study reveals the presence of various insert sequences in the SARS-CoV-2 genome, which not only reflect virus variance but may also affect its pathogenicity and immune escape. The independent insertion mechanisms play a crucial role in the evolution of the novel coronavirus.
The appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring. Sofya Garushyants et al. survey publicly available alignments of SARS-CoV-2 genomes to identify and characterize potential insertion variants throughout the COVID-19 pandemic. They altogether identify 347 inserts, some of which might affect SARS-CoV-2 pathogenicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据