4.7 Article

Nrf2 plays a critical role in the metabolic response during and after spaceflight

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02904-6

关键词

-

资金

  1. Japan Agency for Medical Research and Development (AMED) [JP19am0101001]
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  3. AMED [JP20km0105001, JP20km0105002]
  4. Japan Society for the Promotion of Science (JSPS) [19H05649, 20K07352]
  5. Smart Aging Research Center at Tohoku University
  6. Grants-in-Aid for Scientific Research [20K07352] Funding Source: KAKEN

向作者/读者索取更多资源

The volume of epididymal white adipose tissue and plasma glycerophospholipid and sphingolipid levels in mice increase during spaceflight. These metabolic and physiological changes were largely driven by Nrf2 (NF-E2-related factor-2), ultimately providing a mechanistic target for altering lipid metabolism on Earth and the Great Beyond.
Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses. Akira Uruno et al. report the volume of epidydimal white adipose tissue and plasma glycerophospholipid and sphingolipid levels in mice increase during spaceflight. These metabolic and physiological changes were largely driven by Nrf2 (NF-E2-related factor-2), ultimately providing a mechanistic target for altering lipid metabolism on Earth and the Great Beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据