4.7 Article

Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection

期刊

ISCIENCE
卷 25, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2022.103844

关键词

-

资金

  1. TUM University Library Publishing Fund

向作者/读者索取更多资源

The discovery of overlapping genes with significant coding overlaps has revolutionized our understanding of genomic complexity. In this study, two unusually long antisense open reading frames were found in a pathogenic bacterium, and their transcription and translation were confirmed. Proteomics analysis revealed regulation of protein abundances, suggesting biological functionality. These findings highlight a potentially unexplored dimension of prokaryotic genomes.
The existence of overlapping genes (OLGs) with significant coding overlaps revolutionizes our understanding of genomic complexity. We report two exceptionally long (957 nt and 1536 nt), evolutionarily novel, translated antisense open reading frames (ORFs) embedded within annotated genes in the pathogenic Gram-negative bacterium Pseudomonas aeruginosa. Both OLG pairs show sequence features consistent with being genes and transcriptional signals in RNA sequencing. Translation of both OLGs was confirmed by ribosome profiling and mass spectrometry. Quantitative proteomics of samples taken during different phases of growth revealed regulation of protein abundances, implying biological functionality. Both OLGs are taxonomically restricted, and likely arose by overprinting within the genus. Evidence for purifying selection further supports functionality. The OLGs reported here, designated olg1 and olg2, are the longest yet proposed in prokaryotes and are among the best attested in terms of translation and evolutionary constraint. These results highlight a potentially large unexplored dimension of prokaryotic genomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据