4.7 Article

Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics

期刊

ISCIENCE
卷 25, 期 1, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2021.103555

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO-TTW) [16249]

向作者/读者索取更多资源

The mechanical behavior of monocytes is strain rate dependent and can be altered by chemokines. Understanding the mechanical properties of monocytes can provide physical biomarkers for disease progression and response to therapy.
Monocytes continuously adapt their shapes for proper circulation and elicitation of effective immune responses. Although these functions depend on the cell mechanical properties, the mechanical behavior of monocytes is still poorly understood and accurate physiologically relevant data on basic mechanical properties are lacking almost entirely. By combining several complementary single-cell force spectroscopy techniques, we report that the mechanical properties of human monocyte are strain rate dependent, and that chemokines can induce alterations in viscoelastic behavior. In addition, our findings indicate that human monocytes are heterogeneous mechanically and this heterogeneity is regulated by chemokine CCL2. The technology presented here can be readily used to reveal mechanical complexity of the blood cell population in disease conditions, where viscoelastic properties may serve as physical biomarkers for disease progression and response to therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据