4.7 Article

Effect of Artificial Intelligence Tutoring vs Expert Instruction on Learning Simulated Surgical Skills Among Medical Students A Randomized Clinical Trial

期刊

JAMA NETWORK OPEN
卷 5, 期 2, 页码 -

出版社

AMER MEDICAL ASSOC
DOI: 10.1001/jamanetworkopen.2021.49008

关键词

-

资金

  1. Franco Di Giovanni Foundation
  2. Royal College of Physicians and Surgeons of Canada
  3. Montreal Neurological Institute and Hospital
  4. Brain Tumour Foundation of Canada Brain Tumour Research Grant
  5. Healthy Brains Healthy Lives Foundation Fellowship Grant
  6. Montreal Neurological Institute at McGill University
  7. Doctoral Training Grant for Applicants with a Professional Degree the Fonds de recherche du Quebec -Sante [261422]
  8. Robert Maudsley Fellowship for Studies in Medical Education by the Royal College of Physicians and Surgeons of Canada

向作者/读者索取更多资源

In surgical simulation training, VOA feedback demonstrates superior performance outcomes and skill transfer compared to remote expert instruction, with equivalent OSATS ratings and cognitive and emotional responses, indicating advantages for its use.
IMPORTANCE To better understand the emerging role of artificial intelligence (AI) in surgical training, efficacy of Al tutoring systems, such as the Virtual Operative Assistant (VOA), must be tested and compared with conventional approaches. OBJECTIVE To determine how VOA and remote expert instruction compare in learners' skill acquisition, affective, and cognitive outcomes during surgical simulation training. DESIGN, SETTING, AND PARTICIPANTS This instructor-blinded randomized clinical trial included medical students (undergraduate years 0-2) from 4 institutions in Canada during a single simulation training at McGill Neurosurgical Simulation and Artificial Intelligence Learning Centre, Montreal, Canada. Cross-sectional data were collected from January to April 2021. Analysis was conducted based on intention-to-treat. Data were analyzed from April to June 2021. INTERVENTIONS The interventions included 5 feedback sessions, 5 minutes each, during a single 75-minute training, including 5 practice sessions followed by 1 realistic virtual reality brain tumor resection. The 3 intervention arms included 2 treatment groups, AI audiovisual metric-based feedback (VOA group) and synchronous verbal scripted debriefing and instruction from a remote expert (instructor group), and a control group that received no feedback. MAIN OUTCOMES AND MEASURES The coprimary outcomes were change in procedural performance, quantified as Expertise Score by a validated assessment algorithm (Intelligent Continuous Expertise Monitoring System [ICEMS]; range, -1.00 to 1.00) for each practice resection, and learning and retention, measured from performance in realistic resections by ICEMS and blinded Objective Structured Assessment of Technical Skills (OSATS; range 1-7). Secondary outcomes included strength of emotions before, during, and after the intervention and cognitive load after intervention, measured in self-reports. RESULTS A total of 70 medical students (41 [59%] women and 29 [41%] men; mean [SD] age, 21.8 [2.3] years) from 4 institutions were randomized, including 23 students in the VOA group, 24 students in the instructor group, and 23 students in the control group. All participants were included in the final analysis. ICEMS assessed 350 practice resections, and ICEMS and OSATS evaluated 70 realistic resections. VOA significantly improved practice Expertise Scores by 0.66 (95% CI, 0.55 to 0.77) points compared with the instructor group and by 0.65 (95% CI, 0.54 to 0.77) points compared with the control group (P < .001). Realistic Expertise Scores were significantly higher for the VOA group compared with instructor (mean difference. 0.53 [95% CI, 0.40 to 0.67] points; P < .001) and control (mean difference. 0.49 [95% CI, 0.34 to 0.61] points; P < .001) groups. Mean global OSATS ratings were not statistically significant among the VOA (4.63 [95% CI, 4.06 to 5.20] points), instructor (4.40 [95% CI, 3.88-4.91] points), and control (3.86 [95% CI, 3.44 to 4.27] points) groups. However, on the OSATS subscores, VOA significantly enhanced the mean OSATS overall subscore compared with the control group (mean difference, 1.04 [95% CI, 0.13 to 1.96] points; P = .02), whereas expert instruction significantly improved OSATS subscores for instrument handling vs control (mean difference, 1.18 [95% CI, 0.22 to 2.14]; P = .01). No significant differences in cognitive load, positive activating, and negative emotions were found. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, VOA feedback demonstrated superior performance outcome and skill transfer, with equivalent OSATS ratings and cognitive and emotional responses compared with remote expert instruction, indicating advantages for its use in simulation training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据