4.8 Review

Anisotropic scaffolds for peripheral nerve and spinal cord regeneration

期刊

BIOACTIVE MATERIALS
卷 6, 期 11, 页码 4141-4160

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2021.04.019

关键词

Tissue engineering; Topography; Alignment; Surface pattern; Hydrogel

资金

  1. National Institute of General Medical Sciences [1U54GM115458]
  2. UNMC Center for Heart and Vascular Research

向作者/读者索取更多资源

Using tissue engineering as an alternative approach, scaffolds with anisotropic structures play a crucial role in guiding neural outgrowth and reconnection for long-gap peripheral nerve and spinal cord injuries. Recent advances in fabrication techniques, such as anisotropic surface patterns and 3D hydrogel scaffolds, show promising in vitro and in vivo effects in orienting axonal and glial cell growth. Challenges and prospects of anisotropic architectures in tissue engineering are also discussed.
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据