4.8 Article

A non-flammable hydrous organic electrolyte for sustainable zinc batteries

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives

Xiaoxia Guo et al.

Summary: The study found that adding lithium chloride to the electrolyte can effectively suppress the formation of dendrites on the zinc anode, improving the stability and safety of the battery.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

High Power and Energy Density Aqueous Proton Battery Operated at-90 °C

Tianjiang Sun et al.

Summary: A new aqueous proton battery is developed with a unique electrolyte and reaction mechanism, achieving high power density and energy density at ultralow temperatures. This battery demonstrates the potential for developing low-temperature batteries with improved performance.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes

Yang Yang et al.

Summary: The study successfully developed a Zn@ZnF2 electrode with a multi-functional protective layer by designing a 3D interconnected ZnF2 matrix on the surface of Zn foil. This electrode exhibits stable zinc deposition kinetics and good plating/stripping reversibility, showing potential for practical application in various battery systems.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2

Zhao Cai et al.

Summary: Metal anodes are a promising choice for high energy density rechargeable batteries, but face challenges like volume variation and side reactions. A novel interdigitated metal/solid electrolyte composite electrode was fabricated using a replacement reaction, providing a stable host structure and preventing side reactions. This design demonstrated stable electrochemical performance and low overpotential, outperforming other reported metal electrodes.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure

Qing Li et al.

Summary: The study highlights the practical issues that may arise when using Zn foil for studying the stability and dendrite formation behavior of Zn anodes, suggesting that a Zn powder/current collector configuration is more practical. The research also reveals that during the aging process of the Zn-P@Cu electrode, hydrogen forms on the surface of Cu and the Zn-P dissolves, leading to morphological changes, which are attributed to galvanic corrosion between Cu and Zn.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries

Jiawei Wang et al.

Summary: The research summarized above categorizes and reviews strategies to address challenges related to zinc metal anodes for rechargeable aqueous zinc ion batteries. By focusing on electrochemical and chemical reaction principles, the study aims to provide insights into improving the performance of these batteries and explores prospects for the development of zinc metal anodes.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries

Dan Li et al.

Summary: A low-concentration aqueous Zn(OTF)(2)-Zn(NO3)(2) electrolyte was designed to form a robust inorganic ZnF2-Zn-5(CO3)(2)(OH)(6)-organic bilayer SEI, allowing high Coulombic efficiency and energy density. The study achieved a high CE of 99.8% for 200 h in Ti parallel to Zn cells, and a high energy density of 168 Wh kg(-1) with 96.5% retention for 700 cycles in Zn parallel to MnO2 cells with a low Zn/MnO2 capacity ratio of 2:1.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries

Longtao Ma et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes

Yifang Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries

Huijun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Physical

The Current State of Aqueous Zn-Based Rechargeable Batteries

Ya-Ping Deng et al.

ACS ENERGY LETTERS (2020)

Review Multidisciplinary Sciences

Roadmap for advanced aqueous batteries: From design of materials to applications

Dongliang Chao et al.

SCIENCE ADVANCES (2020)

Article Chemistry, Multidisciplinary

A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems

Daliang Han et al.

Article Energy & Fuels

Realizing high zinc reversibility in rechargeable batteries

Lin Ma et al.

NATURE ENERGY (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review

Tengsheng Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Physical

Scientific Challenges for the Implementation of Zn-Ion Batteries

Lauren E. Blanc et al.

Article Chemistry, Multidisciplinary

A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries

Ahmad Naveed et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Physical

Dendrite-Free Flexible Fiber-Shaped Zn Battery with Long Cycle Life in Water and Air

Qun Guan et al.

ADVANCED ENERGY MATERIALS (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Article Multidisciplinary Sciences

Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation

Huayu Qiu et al.

NATURE COMMUNICATIONS (2019)

Article Multidisciplinary Sciences

Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries

Jian-Qiu Huang et al.

RESEARCH (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Review Chemistry, Multidisciplinary

30 Years of Lithium-Ion Batteries

Matthew Li et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

Dipan Kundu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Article Chemistry, Physical

Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life

Ning Zhang et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Multidisciplinary

A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode

Chong Zhang et al.

CHEMICAL COMMUNICATIONS (2018)

Article Multidisciplinary Sciences

Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion

Joseph F. Parker et al.

SCIENCE (2017)

Article Chemistry, Multidisciplinary

Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery

Chengjun Xu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2012)

Article Chemistry, Multidisciplinary

Effect of the Damping Function in Dispersion Corrected Density Functional Theory

Stefan Grimme et al.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2011)

Article Chemistry, Physical

Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids

Mara G. Freire et al.

JOURNAL OF PHYSICAL CHEMISTRY A (2010)

Article Multidisciplinary Sciences

Ion-water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy

David E. Moilanen et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2009)