4.6 Article

Antiviral properties of select carbon nanostructures and their functionalized analogs

期刊

MATERIALS TODAY COMMUNICATIONS
卷 29, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtcomm.2021.102743

关键词

MS2 Bacteriophage; Carbon nanotubes; Functionalized Carbon Nanotubes; Graphene Oxide; Reduced Graphene Oxide; Antiviral Activity

资金

  1. National Science Foundation [CBET-2030282]

向作者/读者索取更多资源

The study found that various nanocarbons possess antiviral properties, with higher concentrations leading to better efficacy. Functionalized CNT-phenol and CNT-Ag showed the highest virus removal efficiencies, while GO and rGO had lower efficiency individually but significantly improved when combined with CNTs.
The antiviral properties of nanocarbons namely, carbon nanotubes (CNT), graphene oxide (GO), reduced gra-phene oxide (rGO), hybrid GO-CNT, rGO-CNT and CNTs functionalized with carboxylic (CNT-COOH), phenol (CNT-phenol), silver (CNT-Ag) are presented. Escherichia coli MS2 bacteriophage was the model virus. All the nanocarbons showed antiviral activities and the activity increased with increase in concentration. CNT-phenol showed the highest antiviral activity (97.1%) at 0.3mg/mL followed by CNT-Ag (90%), GO-CNT (85.5%), rGO-CNT (83.5%), CNT-COOH (82.5%), CNT (78%), GO (45.6%) and rGO (39.5%) at the same concentration. At 0.05 mg/ml, compared to pure CNTs, those functionalized with silver and phenol showed 270% and 200% higher removal efficiencies respectively. GO and rGO were less efficient by themselves, but with the CNTs, namely GO-CNT and rGO-CNT, their activities enhanced by factors of 650 and 950% respectively. The antiviral activity of the nanocarbons was quantified based on both the concentration of nanocarbons needed to reach a 50 percent deactivation (LD50) and the rate of deactivation. CNT-Phenol was the most effective antiviral nanocarbon studied here, it's LD50 was 1400 times lower than the pure CNTs even though it had similar rate of deactivation as the latter, The antiviral efficiency of GO and rGO were relatively lower compared to the other nanocarbons, however they improved by 92% and 89% for GO and rGO when combined with the CNTs in a hybrid form. From the transmission electron microscopy (TEM) analysis, it was observed that the CNTs entangled the viruses which probably led to physical damage to their structure while the functional groups attached to CNTs such as phenol and Ag further enhanced toxicity due to their own properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据