4.7 Article

Mangosteen Peel Liquid-Protected Soybean Meal Can Shift Rumen Microbiome and Rumen Fermentation End-Products in Lactating Crossbred Holstein Friesian Cows

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2021.772043

关键词

rumen protected protein; microbiome; fermentation; lactating cows; soybean meal (SBM)

资金

  1. Thailand Research Fund (TRF) through the International Research Network (IRN) program [TRF-IRN57W0002]
  2. Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand

向作者/读者索取更多资源

This study investigated the use of liquid-containing phytonutrients as dietary additives to reduce rumen protein degradation in dairy cows. Results showed that high crude protein concentrate and the inclusion of mangosteen peel liquid-protected soybean meal enhanced ruminal propionate production, altered rumen microbiome, and increased milk yield and composition in cows.
Rumen bypass protein can enhance protein availability in the lower gut. This study investigated the use of liquid-containing phytonutrients in dairy cows as a dietary additives to reduce rumen protein degradation. Four crossbred lactating Holstein Friesian cows (75% Holstein Friesian with 25% Thai native breed) with an initial body weight (BW) of 410 +/- 20 kg were randomly assigned to a 2 x 2 factorial arrangement [two crude protein (CP) levels with soybean meal (SBM) or mangosteen peel liquid-protected soybean meal (MPLP)-SBM] in a 4 x 4 Latin square design experiment. Dietary treatments were as follows: T1 = SBM in low crude protein concentrate (LPC) (SBM-LPC); T2 = MPLP-SBM in LPC (MPLP-SBM-LPC); T3 = SBM in high crude protein concentrate (HPC) (SBM-HPC); T4 = MPLP-SBM in HPC (MPLP-SBM-HPC). Apparent digestibilities of organic matter (OM) and neutral detergent fiber (aNDF) were increased (p < 0.05) by CP level in the HPC diet (19% CP), with higher OM and aNDF digestibilities. High crude protein concentrate increased (p < 0.05) the propionic acid in the rumen but reduced (p < 0.05) the acetic acid-to-propionic acid ratio and methane (CH4) production. Rumen microbial populations of the total bacteria, Fibrobacter succinogenes and Butyrivibrio fibrisolvens were increased (p < 0.05) by HPC. Real-time PCR revealed a 30.6% reduction of rumen methanogens by the MPLP-SBM in HPC. Furthermore, efficiency of microbial nitrogen synthesis (EMNS) was 15.8% increased (p < 0.05) by the MPLP-SBM in HPC when compared to SBM-LPC. Milk yield and milk composition protein content were enhanced (p < 0.05) by both the CP level in concentrate and by MPLP inclusion. In this experiment, a high level of CP and the MPLP-SBM enhanced the ruminal propionate, shifted rumen microbiome, and enhanced milk yield and compositions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据