4.7 Article

Effect of carbon fiber on mechanical properties of reactive powder concrete exposed to elevated temperatures

期刊

JOURNAL OF BUILDING ENGINEERING
卷 42, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jobe.2021.102503

关键词

Ultra-high-performance concrete; Steel fiber; Carbon fiber; Elevated temperature; Hybrid fibers

向作者/读者索取更多资源

The study shows that a hybrid fiber combination of carbon fiber and conventional steel fiber can improve the mechanical properties of RPC, especially under high temperature conditions. CFRPC exhibits higher residual compressive, tensile, and flexural strength at 800 degrees Celsius. Carbon fiber shows significant advantages in compressive strength and strength-per-unit weight of RPC.
An ultra-high-performance cement-based composite like reactive powder concrete (RPC) achieves its exceptional engineering properties due to a dense and homogenous microstructure. To improve the ductility and fire-resistance, RPC is of ten reinforced with a high volume of steel fibers (SF). Due to the issues of high density, low durability, and high conductivity; there is a need to study RPC with lightweight and durable fibers. In this research, the mechanical properties of RPC are studied with a single and hybrid fiber mixture of carbon fiber (CF) and conventional SF. The mechanical properties of plain and fiber-reinforced RPC were examined after exposure to 200 degrees C, 400 degrees C, 600 degrees C, and 800 degrees C temperatures for the 2 h. The results showed that CFRPC mechanically performs up to 85-90% potential of conventional SFRPC. Hybridization of 1.5% SF and 0.5% CF produced synergistic effects on the mechanical properties of RPC at both normal and elevated temperatures. After exposure to 800 degrees C, CFRPC showed about 2, 4, and 5 times higher residual compressive, tensile, and flexural strength an plain RPC, respectively. Compressive strength-per-unit weight of CFRPC was notably higher than SFRPC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据