4.7 Review

Impact of fiber reinforcements on properties of geopolymer composites: A review

期刊

JOURNAL OF BUILDING ENGINEERING
卷 44, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jobe.2021.102628

关键词

Geopolymer; Metallic fiber; Synthetic fiber; Natural fibers; Carbon fibers; Inorganic fibers; Composites; Sustainability; Green materials; Alkaline activation

向作者/读者索取更多资源

Conventional Portland cement and geopolymer composites are weak under tensile stresses, but fiber reinforcement can significantly enhance their mechanical properties and durability. Fiber reinforced geopolymer composites show great potential as substitutes for Portland cement-based materials, requiring further research and optimization.
Conventional Portland cement-based composites are inherently weak under tensile stresses, due to its high brittleness quotient, and the problem gets further aggravated in geopolymer composites due to pozzolanic effect of precursors like fly ash, GGBFS, etc. Fiber reinforcement in conventional Portland cement concrete have been adopted, for quite some time, to remodel its character from brittle to ductile or quasi-ductile along with significant enhancement in mechanical as well as durability characteristics. With the global emphasis on partial or full replacement of Portland cement-based products in the construction industry and with the advent of geopolymer composite as potential replacement, efforts have been made to use fiber reinforcement in geopolymer composites to enhance its performance and service life. The development of fiber reinforced geopolymer composite (FRGC) being relatively new, the paper envisages to contribute to overall understanding and assessment of fiber utility in geopolymer materials. Against this background, a comprehensive database is developed based on past research work and pin-point research gaps for further study and analysis. Analytical assessment of past research reveals that FRGCs possess immense potential as a viable substitute for Portland cement-based composites with a scope for providing better mechanical, durability and structural performances, besides being more environmentally friendly. Further research is required to streamline its database, codes and practical design standards with different fibers, parameters and conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据