4.7 Article

Examining wind-induced floor accelerations in an unconventionally shaped, high-rise building for the design of smart screen walls

期刊

JOURNAL OF BUILDING ENGINEERING
卷 43, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jobe.2021.103115

关键词

High-rise buildings; Aeroelasticity; Wind-induced floor accelerations; Wind-induced drift; Nonstructural element design

向作者/读者索取更多资源

This paper describes a study on wind-induced effects for the design of specialized nonstructural elements in an unconventionally shaped high-rise building. The results focus on estimating wind-induced floor acceleration and examining lateral drift ratio to ensure design integrity and occupant comfort.
This paper describes the results of a numerical and experimental study on the wind-induced effects relevant to the design of specialized nonstructural elements in an unconventionally shaped high-rise building. The purpose was to estimate the wind-induced floor acceleration and to examine the lateral drift ratio for the design of nonstructural elements and the occupants' comfort. Nonstructural elements consist of smart screen walls, anchored through stiff, steel connection details to the floor. Wind tunnel measurements of floor accelerations were derived from an aeroelastic model of the high-rise building, replicating the fundamental mode response characteristics of the prototype structure. The model's dynamical properties were inferred from a pilot experiment conducted on a shaking table; estimated natural frequencies and modal damping ratios were used to rescale accelerations measured in wind tunnel. The model's dynamic properties, influenced by wind loads, were later reconstructed through the Random Decrement Technique (RDT). Ranges of acceptability for accelerations and lateral inter-story drift are provided and examined in the context of nonstructural element design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据