4.6 Article

Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas

期刊

DIAGNOSTICS
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/diagnostics12020417

关键词

total metabolic tumor volume; lymphoma; deep learning; convolutional neural network

向作者/读者索取更多资源

The total metabolic tumor volume (TMTV) in lymphomas is a new prognostic factor that can be automated using deep learning CNNs. By training with manual TMTV segmentations, a model has been developed to generate accurate segmentations with high dice scores, reducing computation time significantly.
The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generate segmentations with soft dice loss. Ground truth segmentation has been generated using a combination of different thresholds (TMTVprob), applied to the manual region of interest (Otsu, relative 41% and SUV 2.5 and 4 cutoffs). In total, 407 and 405 PET/CT were used for test and validation datasets, respectively. The training was completed in 93 h. In comparison with the TMTVprob, mean dice reached 0.84 in the training set, 0.84 in the validation set and 0.76 in the test set. The median dice scores for each TMTV methodology were 0.77, 0.70 and 0.90 for 41%, 2.5 and 4 cutoff, respectively. Differences in the median TMTV between manual and predicted TMTV were 32, 147 and 5 mL. Spearman's correlations between manual and predicted TMTV were 0.92, 0.95 and 0.98. This generic deep learning model to compute TMTV in lymphomas can drastically reduce computation time of TMTV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据