4.5 Article Proceedings Paper

Calculation of the permeability in porous media using the lattice Boltzmann method

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2016.05.010

关键词

Lattice Boltzmann method; Porous media; Permeability; Relaxation time

资金

  1. German research foundation (DFG) [GRK 1554]

向作者/读者索取更多资源

In this paper, the lattice Boltzmann method (LBM) is used to simulate three-dimensional laminar flows in porous media and to calculate the associated permeability. An in-house, parallelized code using the message passing interface technique is employed for the study. Three different flow configurations are studied: first, by manually specifying solid cells in a face-centered cube (FCC); then, doing the same in a body-centered cube (BCC); and finally by reading the solid cells for a real 3D geometry from a set of experimental 2D computed tomography images. In all simulations, the Reynolds number is kept well below 1. It was found that the current LBM simulations yield good estimates for the permeability value. The impact of the employed force scheme and single- or multiple-relaxation time (SRT, MRT) was also studied. Although each force scheme (Guo-SRT, Guo-MRT and Shan-Chen-SRT) may show better results in some regions, the strong dependency of SRT models on relaxation time suggests that the proper choice of the force scheme, relaxation time and domain resolution is a compromise between the required accuracy and computational cost. First, higher resolutions lead as expected to increasingly accurate results but requires more computational cost and time. Second, the MRT model shows a lower viscosity dependence in comparison with SRT models but is somewhat slower. Also, the results are more sensitive to the relaxation time value for coarser domains. Furthermore, lower relaxation times necessitate a higher number of iterations to reach the steady state. It was also observed that permeability of both FCC and BCC structures are very close at large porosities. The last test case with the real geometry demonstrates that LB simulations can deliver the hydrodynamic properties in a 3D porous media, a very challenging issue for solvers when relying on classical Navier-Stokes equations. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据